Morristown Utility Commission

Doing Business As
Morristown Water System
PWSID # 0000474

Standard Construction Specifications And Drawings For Pipeline Installation

Water Operations Office
1833 Walters Drive
Morristown, TN 37814
Phone (423) 586-1346
Fax (423) 586-1241

Commissioners:

George B. McGuffin, Chairman
Harold L. Nichols, Secretary
A.E. “Gene” Jolley, Member
Bryan Dickerson, Member
Lynn Elkins, Member

General Manager: Joseph S. Wigington, P.E.
Table of Contents

Section 1 General Construction Information
1. General Description of Work
2. Scope of Project
3. Subsurface Investigation
4. Plans and Specification
5. Licenses and Permits
6. Right-Of-Ways
7. Protection of Public and Private Property
8. Obstruction (shown and not shown)
9. Operations along Highways and Streets
10. Operation of Existing Valves
11. Notices and Coordination with Other Agencies

Section 2 Excavation, Trenching, and Backfill
1. Scope
2. Trenching
3. Stockpiling
4. Waste Materials
5. Blasting
6. Sheeting and Bracing
7. Dewatering
8. Pipe Embedment
9. Backfill Material
10. Backfilling Trenching
11. Pavement Removal
12. Replacing Pavement
13. Maintenance of the Construction Area
14. Resodding and Seeding
15. Protection of Trees and Shrubs
16. Mail Boxes

Section 3 Installation of Pipe, Hydrants, and Services
1. Installing Pipe
2. Installation and Replacement of Services
3. Installation of Hydrants
4. Testing
5. New Line Disinfection
6. Temporary Service
7. Railroad Crossings
8. Thrust Blocks
9. Tie Rods
10. Leak Repair
Section 4 Valves and Accessories
1. Scope
2. Ball Valves 2" or Smaller
3. Resilient - Seated Gate Valves 3" to 14"
4. Butterfly Valves 16" in Size and Larger
5. Air Valves
6. Blow-Off Valves

Section 5 Fire Hydrants
1. Scope
2. Hydrants
3. Hydrants Extensions

Section 6 Valves Boxes, Manholes and Miscellaneous Metals
1. Scope
2. Valve Boxes
3. Manholes
4. Miscellaneous Metal

Section 7 Concrete
1. Scope
2. Concrete

Section 8 Ductile Iron Pipe and Fittings
1. Scope
2. Pipe
3. Fittings

Section 9 PVC Pipe 2" and 6" Only
1. Scope
2. Pipe
3. Fittings
4. Special Instructions

Section 10 Miscellaneous
1. Scope
2. Water Services

Section 11 Standard Specification for Materials

Section 12 Standard Detail Drawings

Section 13 Backflow Prevention
Section 1 - General Construction Information

1. General Description of Work
 A. This work
 1. consists of furnishing and installing water mains, fire hydrants, customer service and
 appurtenances by MWS forces or others as shown in the plans and specified
 2. is to be performed at various locations in Hamblen County.

2. Scope of Project
 A. This work consists of furnishing all materials and complete installation, including testing and
 placing in service.

3. Subsurface Investigation
 A. The Commission has not performed any subsurface investigation.
 B. All excavation is unclassified excavation.

4. Plans and Specification
 A. Any conflict in the plans and specifications and applicable codes and standards, shall be referred
 to the Operations Office of Morristown Water System.

5. Licenses and Permits
 A. All licenses shall be secured prior to start of work.
 B. All permits for construction shall be obtained by MWS or contractor prior to start of construction.

6. Right-Of-Ways
 A. All work performed by MWS will
 1. be on public right-of-way.
 2. be on right-of-way secured by MWS from private property owners.
 B. All work performed by Contractor or others will
 1. be on public right-of-way.
 2. be on right-of-way secured by MWS from private property owners.
 3. be on private property.

7. Protection of Public and Private Property
 A. Contractor shall be responsible for
 1. all damages to public and private property which are a result of their operations.
 2. repair to all property damaged immediately to the satisfaction of the owner of private
 property or the agency having jurisdiction over public property.

8. Obstruction (Shown and not shown) on plans prepared by MWS.
 A. All known underground facilities which would affect MWS’s operations have been shown on
 plans.
 1. to MWS’s best knowledge.
 2. but are not guaranteed as to plans and elevations.
 B. All obstructions shall be exposed in advance of trench excavations by Contractor.
 1. in order that they may be relocated, protected, or removed, as required.
 2. in order that lines and grades may be changed to by-pass then subject to approval of the
 Inspector.
9. Operations along Highways and Streets
 A. Contractor shall
 1. coordinate activities with the agency having jurisdiction of the facility.
 2. not open more than 300 feet of trench at any time without approval of the inspector.
 B. Contractor shall
 1. provide adequate barricades, signs, and flagmen to protect the public from traffic hazards.
 2. provide the above protection subject to the approval of the agency having jurisdiction and MWS’s Inspector.
 C. The MWS Inspector shall retain the authority to
 1. require Contractor to provide additional barricades, warning signs, and lights as necessary.
 2. halt Contractor operation when they deem unsafe for the public protection.

10. Operation of Existing Valves
 A. The operation of all existing valves of the distribution system shall be under the supervision of the Inspector.

11. Notices and Coordination with Other Agencies
 A. Contractor shall
 1. notify and coordinate with all parties and agencies which will be affected their operations.
 2. obtain copies of permits for construction, referred to 1-5,B.
 3. comply with the Regulations of the Department of Commerce (Title15 Code of Federal Regulation, Part 8) relative to non-discrimination when working under a Tennessee Highway Department permit.
Section 2 - Excavation, Trenching, and Backfill

1. Scope
 A. Includes all requirements pertaining to site clearing, trenching, subgrade preparation, sheeting and bracing, pipe embedment, backfill, and compaction for the installation of mains, hydrants, services, and appurtenances.
 B. Includes all other earthwork required to complete the work as specified.

2. Trenching
 A. Materials encountered shall be
 1. removed as required for alignment and grade of work as shown.
 2. unclassified excavation.
 B. Side walls shall be
 1. vertical or sloped within specified trench width limitations below top of pipe.
 2. vertical or sloped or stepped as required for stability above the pipe.
 3. sheeted and braced where necessary.
 4. excavated without undercutting.
 C. Equipment and methods shall be
 1. optional where structures or other facilities are not endangered.
 2. subject to approval of the Inspector where stability or usefulness of other facilities may be impaired.
 D. Length of open trench shall
 1. be in advance of pipe laying only as far as permitted by the Inspector.
 2. not exceed 300 feet at any time unless otherwise approved by the Inspector
 3. be closed at night unless otherwise approved by Inspector.
 E. Depth shall
 1. be sufficient to provide a minimum cover of 36 inches unless otherwise specified by profiles in the drawings.
 2. be increased as necessary to remove unsuitable supporting materials.
 3. be at least 8 inches below bottom of pipe when excavation in rock.
 F. Bottom of trench shall be
 1. protected and maintained when suitable natural materials are encountered.
 2. restored to proper elevation with stabilization material when over-excavated.
 3. cleaned of rock fragments and loose uncompacted material.
 G. Stabilization material shall be
 1. crushed rock, gravel, or sand
 (a) 95% + passing 1/2 sieve.
 (b) approved by Inspector.
 2. compacted inlayers not exceeding 6 inches
 (a) with pneumatic or vibratory equipment.
 (b) to approved firm conditions.
 H. Width of trench shall be
 1. ample for proper pipe installation and backfilling.
 2. in accordance with the following table, unless otherwise approved:

<table>
<thead>
<tr>
<th>Nominal Pipe Size</th>
<th>Minimum Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>12</td>
<td>36</td>
</tr>
<tr>
<td>16</td>
<td>40</td>
</tr>
<tr>
<td>18</td>
<td>42</td>
</tr>
<tr>
<td>24</td>
<td>48</td>
</tr>
<tr>
<td>30</td>
<td>54</td>
</tr>
</tbody>
</table>

3. Stockpiling shall
 A. not obstruct or prevent access to
1. roads or driveways.
2. utility control devices
3. ditches or natural drainage channels.

B. be performed in a manner to avoid endangering
 1. the work.
 2. stability of banks or structures.
 3. health of trees.

4. Waste Materials shall
 A. include all excess usable materials.
 B. consist of unsuitable materials.
 C. be disposed of at off site locations arranged for by the Contractor.

5. Blasting shall be
 A. in conformance with all local and state safety codes.
 B. performed to avoid shattering rock beyond required limits of trench or excavation.
 C. with charge holes properly located and drilled to correct depth for charges used.
 D. with charges limited in size as required to permit reasonable removal of material by excavating
 equipment.
 1. with "outbreak" effects corrected
 (a) by removal of broken rock, and
 (b) replacement with approved material.
 E. conducted under cover of mats in congested areas or in proximity to facilities subject to
 damage.

6. Sheetin and Bracing shall be
 A. used in open cuts as required
 1. by state laws and local ordinances.
 2. to conform with recommendations set forth in AGC manual of Accident Prevention in
 Construction.
 3. to protect life, property, or the work.
 4. to avoid excessively wide cuts in unstable material.
 B. removed simultaneously with backfilling, except where otherwise approved.
 C. left in place when required by condition of supported material.
 D. cut off at approved elevation below the surface when left in place.
 E. replaced with sand or other approved material in voids left after withdrawal.

7. Dewatering shall
 A. be aided by grading and stockpiling as necessary to divert surface water from excavations.
 B. be accomplished by draining or pumping immediately when water appears, and continuously if
 necessary.
 C. be discharged to approved drains or natural channels.
 D. include removal of subgrade material rendered unsuitable because of excess water, and
 replacement with trench stabilization material.
8. Pipe Embedment shall
 A. be required when excavation is in rock.
 B. be required when specified on the plans or other parts of this specification.
 C. be rushed rock or gravel 95% + passing 3/4" sieve, and 100% passing 1-1/2" sieve when
 required for Ductile Iron.
 D. be placed so that the bottom layer
 1. has a minimum depth of 4 inches below the pipe barrel when excavation is in earth
 2. has a minimum depth of 8 inches below the pipe barrel when excavation is in rock.
 3. is at proper elevation to uniformly support the pipe barrel throughout its length.
 E. be placed so that the top of the layer is at the elevation of the center line of the pipe

9. Backfill Material
 A. shall be obtained from
 1. trench excavation.
 2. borrow pits at locations arranged and paid for by Contractor.
 B. shall be free from vegetative material, organic matter, refuse, ashes, cinders, boulders, rocks,
 broken pieces of pavement, frozen or other material considered unsuitable by Inspector.
 C. shall contain sufficient moisture and fine material to provide dense mass free of voids and to
 obtain a minimum compaction of 95%.
 D. for PVC shall consist of
 1. embedment material or earth fill containing no stones or gravel larger than that allowed in
 embedment material from the bottom of the trench to one (1) foot above the top of pipe.
 2. earth fill containing an occasional stone or broken piece of pavement no larger than 4 inches
 in any dimension from 1 foot above the pipe to the sub-grade of the pavement.
 E. for ductile iron shall consist of
 1. embedment material only from the bottom of the trench to center line elevation of the pipe.
 2. earth fill containing an occasional stone or broken piece of pavement no larger in any
 dimension than 6 inches from the center line elevation of the pipe to the subgrade of the
 pavement, care being taken that no large stone or broken piece of pavement is placed within
 12 inches of the pipe.
 F. shall be approved by the Inspector before placing.

10. Backfilling Trenches shall
 A. proceed behind trench excavation and pipe laying operations so that
 1. length of open trench shall not exceed 300 feet at any time unless otherwise approved by the
 Inspector.
 2. all drives and streets crossed by trench are open to traffic at end of work day.
 3. safe travel at night can be made.
 B. be compacted above the center line of the pipe or top of the trench in all drives or streets
 crossed.
 1. with approved mechanical equipment.
 2. in layers of thickness within compacting ability of equipment used.
 3. to density adequate to prevent significant future settlement.
 4. to the satisfaction of the agency having primary jurisdiction of the facility
 5. to the satisfaction of the Inspector.
11. Pavement Removal
 A. Concrete pavements shall be
 1. cut in a manner to prevent
 (a) spalling at edges of cut.
 (b) random and erratic cracking.
 B. All pavements
 1. shall be cut to a width
 (a) as required by the agency having jurisdiction of the pavement, or as shown in detail for pavement repair.
 (b) one foot beyond the outside edge of excavation for
 (i) concrete vaults
 (ii) anchor bolts
 (iii) other appurtenances.
 (c) undermined during construction operations shall be
 (i) removed to straight lines square with the pavement joints.
 (ii) removed back to area of firm ground.
 C. Necessary permits for cutting pavement shall
 1. be obtained before cutting pavements and copies in the possession of the Inspector.
 2. be obtained by the contractor from the Agency.
 D. Contractor shall confirm to all requirements of the agency having jurisdiction of the pavement, and shall obtain said requirements form the agency prior to cutting pavement.

12. Replacing Pavement
 A. all pavement and other surface of streets, roads, driveways, etc., and all curbs and sidewalk cuts, damaged, or removed shall be
 1. replaced to their original or better state and condition.
 2. replaced with new materials.
 3. replaced according to requirements of agency having primary jurisdiction of the facility, or as shown in detail for pavement repair.

13. Maintenance of the Construction Area
 A. During construction and until completion of pavement replacement contractor shall be required to
 1. add materials to the trench as often as necessary to assure safe vehicular passage.
 (a) to the satisfaction of the Inspector.
 (b) to the satisfaction of the agency having primary jurisdiction of the facility.
 2. remove rubbish, dust, mud, dirt, and gravel by means of hand broom and/or flush trucks as often as necessary to avoid creating a public nuisance
 (a) to the satisfaction of the Inspector.
 (b) to the satisfaction of the agency having primary jurisdiction of the facility.

14. Resodding and Seeding
 A. All established lawn and grassed areas cut by the line of trench shall be resodded or seeded
 1. after completion of job.
 2. to the satisfaction of the Inspector.
 B. All sod shall
 1. be of the same type removed or damaged.
 2. be best grade.
 3. be live, fresh growing grass when placed.
 4. have at least two inches of soil adhering to roots.
 5. be replaced by experienced personal and maintained until growth is established.
 C. All topsoil dressing and seeding shall be
 1. in accordance with good practice.
 2. with the approval of the Inspector.

15. Protection of Trees and Shrubs
 A. Trees and Shrubs
1. shall not be removed where outside excavation limits.
2. damaged or removed by Contractor shall be replaced.
 (a) to the Inspector's satisfaction
 (b) and maintained until growth is established.
B. Trimming of standard trees where required shall be as directed by Insp.

16. Mail Boxes shall be replaced as required to the satisfaction of the Inspector.
Section 3 - Installation of Pipe, Hydrants, and Services

1. Installation of Pipe
 A. Handling and storage of pipe and fittings shall be
 1. with care to avoid damage to pipe and lining,
 2. so that pipe units are kept from contact with adjacent units by means of wooden blocks.
 3. in a manner to keep interior of pipe free from dirt, foreign material and ground water.
 B. Laying of pipe shall be
 1. be in manner that the pipe is uniformly supported throughout its entire length on the bottom quadrant.
 2. be subject to the approval of the Inspectors as pertains to the method of laying and inspection of pipe for damage.
 3. not be on blocks.
 4. include the interior cleaning by use of a ram brush or other approved methods immediately prior to installation.
 5. be at least 10' horizontally from any sanitary sewer, storm sewer, or sewer manhole where conditions allow.
 6. provide 18” vertical separation between water and sewer lines in the event of crossing where conditions allow.
 7. be so that when conditions prevent a 10 foot horizontal separation the bottom of the water main must be at least 18 inches above the top of the sewer. Water and sewer pipes cannot be in the same trench.
 8. be so that if water mains must cross under sewers there must be at least 18 inches separation and the length of water pipe shall be centered so that the joints are equidistant and as far as possible from the sewer.
 C. Pipe shall be cut using
 1. hydraulic cutters - cast iron only.
 2. a Carborundum saw - ductile.
 3. other approved methods for 12" and larger in diameter.
 D. Pipe shall be protected at the end of each work day by
 1. a plug of the same diameter placed in the pipe and secured by at least two bolts or set screws,
 2. a test plug of the cone-lock or wedge lock variety,
 3. other methods as approved by the Inspector.
 E. All dead end mains will be provided with a fire hydrant or blow-off.

2. Installation and Replacement of Services shall be completed by MWS forces and cost of replacement will be incurred by Contractor.

3. Installation of Hydrants
 A. Hydrants shall be
 1. connected to the main with a 6” ductile iron branch.
 2. installed with a 6” gate valve in the branch.
 3. installed such that the branch piping and the hydrant shoe have uniform bearing.
 4. as specified in Division 5
 5. aligned vertically or plumbed to the satisfaction of the Inspector.
 6. installed with extensions as specified in Division 5 when required by the Inspector.
 7. installed according to the typical installation detail shown in Standard Drawings of these specifications unless otherwise directed by the Inspector.
 8. installed with thrust block as shown in Standard Drawings or as directed by the Inspector.
B. Hydrant drainage shall be provided
 1. in impervious soil by
 (a) excavating a pit 2’ x 3’.
 (b) filling compactly the pit with crushed stone and around the elbow of the hydrant above the top of the hydrant flange on the shoe or as directed by the Inspector.

4. Testing
 A. All mains, hydrants, and services shall be
 1. tested at 150 psig, unless otherwise specified.
 2. tested under the supervision of the Inspector.
 B. All mains, hydrants, and services shall be tested in accordance with AWWA Standard C600-82, or latest revision, for Installation of Ductile Iron Water Main, Section 4.

5. Disinfection
 A. All mains, services, and hydrants shall be disinfected using the continuous feed method in accordance with AWWA Standard C601-81, Section 5.2, or latest revision.

6. Temporary Service
 A. Contractor shall provide temporary installation in order to provide continuous service to customers where re-laying operations are being conducted.

7. Railroad Crossings
 A. All railroads crossings shall
 1. be tunneled, bored, or jacked.
 2. be encased as shown on the plans.
 3. be installed in accordance with the appropriate railroad's specifications.

8. Thrust Blocks
 A. Shall be required for all tees, bends, offsets, and dead ends
 B. Shall be poured against undisturbed earth.
 C. Shall be enlarged as directed by the Inspector if poured against backfill or unstable soil.
 D. Shall be dimensioned as shown in the thrust block detail of specifications.
 E. Shall be constructed of concrete as specified in Division 7
 F. Shall be set for three days prior to placing main and appurtenances in service.

9. Tie Rods
 A. Shall be required on all fire hydrants as directed by the Inspector.
 B. Shall be used on bends, valves and offsets as directed by the Inspector.
 C. Shall be coated with a bitumasatic black paint.
Section 4 - Valves and Accessories

1. Scope
 A. Provides for all labor, equipment, and materials necessary to furnish and install
 1. line valves.
 2. air relief and vacuum valves.
 3. line blow off valves.
 B. Provides for installation of valve boxes and manholes as specified on plans and other divisions of this specification.

2. Ball Valves 2" or Smaller in Size shall be
 A. As specified in Division 11 of these specifications.
 B. installed in valve boxes unless otherwise specified.

3. Resilient - Seated Gate Valves 3" to 14" in Size shall
 A. be for water working pressure not less than 150 psi.
 B. be as specified in Division 11 of these specifications.
 C. be installed in valve boxes unless otherwise specified.

4. Butterfly Valves 16" in Size and Larger shall
 A. be as specified in Division 11 of the specifications.
 B. be installed with valve boxes unless otherwise specified.

5. Air Valves shall
 A. be as specified in Division 11 of these specifications.
 B. be 1" on pipelines 12" in diameter and smaller and 2" on pipelines 14" in diameter and larger.
 C. be located at all high points on the pipeline and in manholes or as directed by the Inspector.
 D. be installed in accordance to detail in Standard Drawings of these specifications unless otherwise directed by the Inspector.

6. Blow-Off Valves shall
 A. be as specified in Division 11 of these specifications.
 B. be 2" in size unless otherwise directed by the Inspector.
 C. be installed in accordance with detail as shown in Standard Drawings or as directed by the Inspector.
Section 5 - Fire Hydrants

1. Scope
 A. Provides for all labor, equipment and material necessary to furnish and install traffic type hydrants.
 B. Provide for fire hydrants extensions as required.

2. Hydrants shall
 A. be as specified in Division 11 of these specifications.
 B. be designed for water working pressures not less than 150 psi.
 C. be installed in accordance to Division 3, Section 3 of these specifications.

3. Hydrant Extensions shall
 A. be as specified in Division 11 of these specifications and be used when required to place the hydrant nozzles at the proper elevation as determined by the Inspector.
 B. be compatible with the fire hydrant being adjusted.
 C. be installed with one set of shear bolts in the top flange and machine bolts in the bottom flange.
Section 6 - Valve Boxes, Manholes and Miscellaneous Metals

1. Scope
 A. Furnishing all necessary materials and labor for installing valve boxes and manholes

2. Valve Boxes shall be
 A. made to conform to Division 11, Castings, of these specifications.
 B. installed in accordance with Standard Drawings of these specifications.
 C. installed with the opening centered over the valve operating nut.

3. Manholes shall be
 A. of the following materials
 1. number 1, common building brick as specified in Division 14.
 2. mortar composed of one part Portland cement and hydrated lime to two parts sand. Hydrated lime shall be 10% of cement.
 3. sand shall pass a screen test of not less than 10 meshes per linear inch.
 B. set even with the paved surface when set in streets and driveways.
 C. set 6” above grade when located in unpaved areas or as directed by the Inspector.

4. Miscellaneous Metal
 A. Includes
 1. all cast iron frames
 2. manhole covers
 3. manhole steps
 4. valve boxes
 5. meter box lids
 6. valve box lids
 B. An item composed of more than one unit shall
 1. have units interchangeable with all other items.
 2. not consist of selective fits of the various parts.
 C. shall be approved by the inspector before installation.
Section 7 - Concrete

1. Scope
 A. Furnish and place necessary concrete for thrust blocks, gravity blocks, vaults, and miscellaneous structures.

2. Concrete
 A. Design of mix shall
 1. have minimum compressive strength of 2,500 psi at seven days.
 2. have a minimum compressive strength of 4,000 psi at 28 days when tested in accordance with ASTM Standard C39.
 3. be by a competent laboratory
 (a) at contractors expense
 (b) of 3" maximum slump, unless otherwise specified
 (c) with the following information submitted to the Inspector for approval.
 (i) seven day and 28 day compressive test results on the primary mix
 (ii) gradation of fine and coarse aggregate and the percent of inorganic and organic impurities in each.
 (iii) source of fine and coarse aggregates.
 (iv) brand name of cement.
 B. Ready-Mix concrete may be used provided
 1. above requirements are met.
 2. truck mixers are equipped so that mixing time, number of revolutions of the mixer and amount of water added to the batch can be readily verified by the Inspector.
 C. Material shall consists of
 1. fine and coarse aggregate conforming to Federal Specification SS-A-281A, Grade A.
 2. Portland cement conforming to ASTM Designation C-150, Type I or Type II, of good quality.
 3. reinforcing steel conforming to ASTM Designation A-15, with deformations conforming to ASTM Designation A-305.
 4. water, clean and free form injurious amounts of oil, acid, alkali, organic matter of other deleterious substances.
 D. Placing of reinforcing steel shall be
 1. accurate as shown on plans.
 2. tied at all intersections.
 3. supported on chairs.
 4. at a minimum clear distance of
 (a) 3" between steel and unformed surfaces on contact with earth.
 (b) 2" between steel and formed surfaces on contact with earth.
 (c) 1' 1/2" between steel and all other formed surfaces.
 E. Placing of concrete shall be
 1. withheld until forms and reinforcement have been inspected by the Inspector.
 2. compacted with aid of mechanical vibrators, rods, slicing bars, etc.
 3. without honeycomb and large air bubble marks on surface.
 F. Protection and curing shall be
 1. immediately after placing and finishing.
 2. provided for all concrete surfaces not covered by forms.
 3. by use of wet mats or burlap, or other approved methods.
 G. Testing shall
 1. be made by Contractor as directed by the Inspector.
 2. be in conformance with ASTM Designation C-39.
Section 8 - Ductile Iron Pipe and Fittings

1. Scope
 A. Includes the furnishing of ductile iron pipe.
 B. Includes all plugs, flanges, jointing materials, specials, and appurtenances, required for the complete installation of the pipe fittings.

2. Pipe shall
 A. as specified in Division 11 of these specifications.
 B. be slip joint pipe unless otherwise directed by the Inspector.
 C. have a wall thickness in accordance with the plans and other parts of this specification: Class 350 for all sizes

3. Fittings shall
 A. be as specified in Division 11 of these specifications.
 B. be short body ductile iron.
 C. be furnished with mechanical joint unless otherwise directed by the Inspector.
Section 9 - PVC Pipe - 2” and 6” Only

1. Scope
 A. Includes the furnishing of pvc pipe and fitting as required.
 B. Includes all plugs, couplings, jointing materials, specials, and appurtenances, required for the complete installation of the pipe and fittings.

2. Pipe shall
 A. be as specified in Division 11 of these classifications.

3. Fittings shall
 A. be class 200 pressure PVC gasket joint "O" ring bell joint for Water service.

4. Special Instructions
 A. Copper wire, size 14, solid insulated cover type THHN, will be installed the full length of the pipeline 1 foot above the pipe and tied to each gate valve.
Section 10 - Miscellaneous

1. Scope
 A. Specify miscellaneous materials required to complete job as outlined on the plans and in other Divisions of this specifications.

2. Water services connections shall be made by MWS
Section 11 – Standard Specifications for Materials

Index

<table>
<thead>
<tr>
<th>Specification #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>3” – 64” Slip Joint Ductile Iron Pipe</td>
</tr>
<tr>
<td>150</td>
<td>2” – 8” PVC Pipe Class 200</td>
</tr>
<tr>
<td>200</td>
<td>2” – 16” Slip or Mechanical Joint, Resilient Seated Gate Valves</td>
</tr>
<tr>
<td>210</td>
<td>3” – 12” Tapping Valves</td>
</tr>
<tr>
<td>300</td>
<td>3” – 24” Mechanical Joint, Compact Fittings</td>
</tr>
<tr>
<td>310</td>
<td>3” – 24” Slip Joint, Compact Fittings</td>
</tr>
<tr>
<td>320</td>
<td>3” – 12” Tapping Sleeve, Stainless Steel</td>
</tr>
<tr>
<td>400</td>
<td>Fire Hydrants</td>
</tr>
<tr>
<td>500</td>
<td>5/8” Disc. Water Meters</td>
</tr>
<tr>
<td>510</td>
<td>¾” Disc. Water Meters</td>
</tr>
<tr>
<td>520</td>
<td>1” Disc. Water Meters</td>
</tr>
<tr>
<td>530</td>
<td>1–¼” Disc. Water Meters</td>
</tr>
<tr>
<td>540</td>
<td>2” Disc. Water Meters</td>
</tr>
<tr>
<td>900</td>
<td>3” – 18” Plain Swing Check Valves</td>
</tr>
<tr>
<td>901</td>
<td>3” – 18” Tilting Disc Check Valves</td>
</tr>
<tr>
<td>990</td>
<td>Cast Iron Valve Box</td>
</tr>
</tbody>
</table>
Specifications for 3” – 64” Slip Joint, Ductile Iron Pipe

MWS Item Number(s) | 400 – 2” or 3” Iron Pipe | 401 – 4” Iron Pipe
| 402 – 6” Iron Pipe | 403 – 8” Iron Pipe
| 404 – 10” Iron Pipe | 405 – 12” Iron Pipe
| 410 – 16” Iron Pipe | 411 – 18” Iron Pipe
| 412 – 24” Iron Pipe

Last Revision: September 25, 2002
Date Written: March 5, 1998

General:

Pipe shall be ductile iron manufactured in accordance with the requirements of ANSI/AWWA C151/A21.51 or latest revision. Each pipe shall be hydrostatically tested and marked in accordance with Section 51-9 and 51-10. Furthermore, tensile and strength test shall be provided prior to acceptance in accordance with Section 51-12.

Push-On joints for such pipe shall be in accordance with ANSI/AWWA C111/A21.11 or latest revision.

Pipe thickness shall be designed in accordance with ANSI/AWWA C150/A21.5 or latest revision and shall be pressure class 350 unless otherwise noted on plans and specifications for project.

Pipe shall have cement motor lining in accordance with ANSI/AWWA C104/A21.04 or latest revision.

Approved Manufacture(s):

U.S. Pipe Company
American Ductile Iron Pipe Company
Griffin Pipe Products
Morristown Water System Specifications for 2"- 8" Slip Joint, PVC Pipe Class 200

MWS Item Number(s) 601 – 2" PVC 602 – 6" PVC 603 – 8" PVC 604 – 4" PVC

Last Revision: April 30, 2010 Date Written: March 5, 1998

General:

PVC pipe shall be 250 PSI (SDR-17), bear the NSF seal of approval and meet requirements of PS-22-70 and ASTM-2241. Type 1, 2, 150psi design stress compounds meeting ASTMD-1784 specifications (PVC 1120) shall be used in the manufacturing. Shall be furnished with integral bells and gaskets in 20-foot lengths.

Approved Manufacture(s):

Contractor to provide submittals for approval before installation.
General:

A. Valves shall be of the resilient seat type, non-rising stem, with o-ring seals. Valves shall be of the highest quality both as to materials and workmanship and shall conform to ANSI/AWWA C509-94 or latest revision.

B. Valve body, bonnet and follower glands shall be cast of ductile iron conforming to ASTM A536. Shell thickness of body and bonnet component shall conform to Table 2 Sec. 4.4 to ANSI/AWWA C509-94 or latest revision.

C. Valve body and bonnet shall be coated on all exterior and interior surfaces with a fusion bonded epoxy conforming to the requirements of AWWA "Standard for Protective Coatings for Valves and Hydrants" C550-81. Manufacture shall certify that the coating will conform to the following sections of the standard.
 1. Section 2 – Materials. Relating to the suitability of the coating for use in a potable water system.
 2. Section 3 – Coated Sample Testing. Relating to disbondment or blistering and impact damage.

D. The valve shall be designed so that during operation, or cycling, of the valve, there is no friction or abrasion or rubbing together of gate and body that can wear away any rubber or epoxy and expose bare iron.

E. The sealing mechanism shall consist of a single piece, solid, ductile iron wedge, completely encapsulated by a vulcanized synthetic rubber coating. The resilient sealing mechanism shall provide zero leakage at applicable design working pressure when installed with the line flow in either direction.

F. Valve shall be NSF certified, conforming to the requirement of ANSI/NSF Standard 61. Valves shall be labeled NSF.

G. Gate valves for buried service shall be furnished with mechanical joint end connections unless otherwise shown on the drawings or specified herein.

Approved Manufacture(s):

- U.S. Pipe Company
- American Ductile Iron Pipe Company
- Mueller
- M & H Valve Company
Specifications for 3” – 12” Tapping Valves

MWS Item Number(s) 938 – 10” Tapping Valve 939 – 12” Tapping Valve
940 – 6” Tapping Valve 941 – 8” Tapping Valve

Last Revision: March 5, 1998
Date Written: March 5, 1998

General:

A. Valves used for tapping shall be of the resilient seat type, non-rising stem, with o-ring seals. Valves shall be of the highest quality both as to materials and workmanship and shall conform to ANSI/AWWA C509-94 or latest revision.
B. Valve body, bonnet and follower glands shall be cast of ductile iron conforming to ASTM A536. Shell thickness of body and bonnet component shall conform to Table 2 Sec. 4.4 to ANSI/AWWA C509-94 or latest revision.
C. Valve body and bonnet shall be coated on all exterior and interior surfaces with a fusion bonded epoxy conforming to the requirements of AWWA “Standard for Protective Coatings for Valves and Hydrants” C550-81. Manufacture shall certify that the coating will conform to the following sections of the standard.
 1. Section 2 – Materials. Relating to the suitability of the coating for use in a potable water system.
 2. Section 3 – Coated Sample Testing. Relating to disbondment or blistering and impact damage.
D. The valve shall be designed so that during operation, or cycling, of the valve, there is no friction or abrasion or rubbing together of gate and body that can wear away any rubber or epoxy and expose bare iron.
E. The sealing mechanism shall consist of a single piece, solid, ductile iron wedge, completely encapsulated by a vulcanized synthetic rubber coating. The resilient sealing mechanism shall provide zero leakage at applicable design working pressure when installed with the line flow in either direction.
F. Valve shall be NSF certified, conforming to the requirement of ANSI/NSF Standard 61. Valves shall be labeled NSF.
G. End connections shall be mechanical joint and flanged. The flanged end shall include a special tapping lip that properly fits the counterbore of the tapping sleeve. The mechanical joint end shall meet MSS SP-113 to insure proper alignment of tapping machine.

Approved Manufacture(s):

 U.S. Pipe Company
 American Ductile Iron Pipe Company
 Mueller
 M & H Valve Company
Fittings shall be available in 4" through 16" sizes and shall be cast from ductile iron in accordance with ANSI/AWWA C153/A21.53 or latest revision with mechanical joint bells. Glands, bolts, nuts and gaskets shall be in accordance with requirements of ANSI/AWWA C153/A21.53 or latest revision and listed by an approved certifying agency as conforming to the requirements of ANSI/NSF 61. The working pressure rating shall be 350 psi. Fittings shall be coated with a 6-8 mil nominal thickness bonded epoxy conforming to the requirements of ANSI/AWWA C550 and C116/A21.16.

All fittings shall be supplied with accessories—glands, bolts, and standard styrene butadiene rubber (SBR) gaskets as per ANSI/AWWA C116/A21.16 or latest revision.

Approved Manufacturer(s):
- U.S. Pipe Company
- American Ductile Iron Pipe Company
- Griffin Pipe Products Company
Specifications for 4” – 16” Mechanical Joint and Push On Compact Tees

MWS Item Number(s) 430-599 -- 4” through 16” Tees

Last Revision: May 26, 2000
Date Written: March 5, 1998

General:

Fittings shall be available in 4” through 16” sizes and shall be cast from ductile iron in accordance with ANSI/AWWA C153/A21.53 or latest revision with mechanical joint or push on bells. Glands, bolts, nuts and gaskets shall be in accordance with requirements of ANSI/AWWA C153/A21.53 or latest revision and listed by an approved certifying agency as conforming to the requirements of ANSI/NSF 61. The working pressure ratting shall be 350 psi. Fittings shall be coated with a 6-8 mil nominal thickness bonded epoxy conforming to the requirements of ANSI/AWWA C550 and C116/A21.16.

All fittings shall be supplied with accessories—glands, bolts, and standard styrene butadiene rubber (SBR) gaskets as per ANSI/AWWA C116/A21.16 or latest revision.

Approved Manufacture(s):

U.S. Pipe Company
American Ductile Iron Pipe Company
Griffin Pipe Products Company
Specifications for 3” – 24” Slip Joint, Compact Fittings

MWS Item Number(s) 430-599 -- 3” through 24”
Plugs, Tees, Bends, Crosses, Reducers, Sleeves, & Wyes

Last Revision: May 26, 2000
Date Written: March 5, 1998

General:

Fittings shall be available in 4” through 16” sizes and shall be cast from ductile iron in accordance with ANSI/AWWA C153/A21.53 or latest revision. The working pressure rating shall be 350 psi. Fittings shall be slip joint in accordance with all applicable requirements of ANSI/AWWA C153/A21.53 or latest revision. Fittings shall be coated with a 6-8 mil nominal thickness bonded epoxy conforming to the requirements of ANSI/AWWA C550 and C116/A21.16.

A method of providing joint restraint within the socket shall be available when specified.

Approved Manufacture(s):

U.S. Pipe Company
American Ductile Iron Pipe Company
Griffin Pipe Products
Specifications for 3"-12" Tapping Sleeves, Stainless Steel Body

MWS Item Number(s)

<table>
<thead>
<tr>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>948</td>
<td>6x6 Tapping Sleeve</td>
</tr>
<tr>
<td>950</td>
<td>12x8 Tapping Sleeve</td>
</tr>
<tr>
<td>952</td>
<td>18x6 Tapping Sleeve</td>
</tr>
<tr>
<td>954</td>
<td>12" Tapping Sleeve</td>
</tr>
<tr>
<td>956</td>
<td>10x6 Tapping Sleeve</td>
</tr>
<tr>
<td>949</td>
<td>12x6 Tapping Sleeve</td>
</tr>
<tr>
<td>951</td>
<td>10x8 Tapping Sleeve</td>
</tr>
<tr>
<td>953</td>
<td>18x8 Tapping Sleeve</td>
</tr>
<tr>
<td>955</td>
<td>12x10 Tapping Sleeve</td>
</tr>
<tr>
<td>957</td>
<td>16x6 Tapping Sleeve</td>
</tr>
</tbody>
</table>

Last Revision: March 5, 1998
Date Written: March 5, 1998

General:

Tapping sleeves, stainless steel body, shall be compatible with any standard tapping valve and Mueller CC-25 Drilling Machine. Outlet branch and flange shall be in compliance with AWWA Standard C-207, Class D ANSI 150lb drilling. Nuts, bolts, and washer to be 304 stainless steel.

Approved Manufacture(s):

- Ford Meter Box Company
- Romac Company
- Mueller
- Smith-Blair
Morristown Water System

Specifications for **Fire Hydrants**

MWS Item Number(s) 800

Last Revision: April 8, 2013

Date Written: March 5, 1998

General:

Fire Hydrants shall conform to the requirements of AWWA standard for Dry-Barrel Fire Hydrants (ANSI/AWWA C502-05 or latest revision) and in addition, shall be listed by Underwriters Laboratories and Factory Mutual Research Corp. Cast marks or other permanent marks shall be used to identify the fire hydrant as conforming to these standards.

Fire Hydrant shall also conform to the following supplementary specifications.

1. The **bury length** (distance from ground-line to insert of the hydrant inlet) shall be **42 inches**.

2. Hydrant **operating nut** shall be ductile iron or bronze and shall be **pentagonal in shape, 1-1/2” point to flat (AWWA Standard)**. The operating nut shall also function as a weather shield. Hydrant shall open left counterclockwise.

3. Nozzles **shall have two 2-1/2” hoses 180 degrees apart and one 4-1/2” pumper**. All nozzles shall be at the same elevation. Nozzle threads shall be National Standard Fire Hose Coupling Screw Thread as described in Appendix A of AWWA C502. Nozzle caps shall be provided with chains and gaskets. Nozzle caps shall have nut configuration the same as the hydrant-operating nut. Nozzles shall be reverse threaded into the upper barrel and mechanically locked in place.

4. Hydrant **main valve shall be 4-1/2” minimum** and shall be of the full compression design, openings against and closing against pressure. The main valve seat ring shall thread into bronze sub-seat and all the gaskets sealing the seat ring shall be on a bronze-to-bronze seating surface. The seat ring threads shall not serve as a pressure seal. The entire valve and rod assembly shall be removed by use of a small lightweight seat removal wrench.

5. The drain valves shall allow complete drainage of all residual water in the hydrant. The circumfarantial drain passage inside the hydrant shall be bronze on all surfaces.

6. All exterior bolting and fasteners below the ground-line shall be stainless steel. Plated steel bolts and nuts are not acceptable.

7. Hydrant shall be the breakaway type with a frangible ground-line and rod coupling designed to break upon traffic impact and prevent further damage to the hydrant and connecting pipe. The frangible coupling shall allow the upper section to be rotated to any desired position. Couplings that employ lugs, keeper devices or a breakaway barrel are not acceptable.

8. The hydrant inlet shall be **Mechanical Joint or Slip Joint**

Approved Manufacture(s):

1. Mueller Super Centurion
2. M & H Valve Company Model 129
Specifications for 5/8" Water Meters

MWS Item Number(s) Unknown
Last Revision: March 23, 2003
Date Written: September 11, 1995

General:
Specification for Nutating Disc or Oscillating Piston cold water meters w/out spuds for use in measurement of potable cold water in residential, commercial, and industrial services where flow is in one direction only.

Approved Manufactures:

Badger Model 25

Performance Conditions:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>1/2" - 5/8"</td>
</tr>
<tr>
<td>Typical Operating Range</td>
<td>1/2 - 25 GPM</td>
</tr>
<tr>
<td>Low Flow</td>
<td>1/4 GPM</td>
</tr>
<tr>
<td>Maximum Continuous Flow</td>
<td>15 GPM</td>
</tr>
<tr>
<td>Pressure Loss</td>
<td>2.8 PSI at 15 GPM</td>
</tr>
<tr>
<td>Maximum Operating Temp.</td>
<td>80 Deg. F.</td>
</tr>
<tr>
<td>Maximum Operating Press.</td>
<td>150 PSI</td>
</tr>
<tr>
<td>Register Type</td>
<td>Straight reading, permanently sealed magnetic drive w/ warranty</td>
</tr>
<tr>
<td>Register Capacity</td>
<td>10,000,000 Gallons</td>
</tr>
<tr>
<td>Meter Connections</td>
<td>Bronze to fit 1/2" Spud Thread</td>
</tr>
<tr>
<td>Meter Housing</td>
<td>Bronze</td>
</tr>
<tr>
<td>Bottom Plates</td>
<td>Bolted Bronze or Cast Iron</td>
</tr>
<tr>
<td>Measuring Chamber</td>
<td>Plastic</td>
</tr>
<tr>
<td>Meter Length</td>
<td>7-1/2"</td>
</tr>
<tr>
<td>AMR Capability</td>
<td>RTR</td>
</tr>
</tbody>
</table>

Construction:

Meter should be constructed to meet or exceed AWWA Standards C710-90 Cold-Water Meters Displacement Type. Manufacture shall place Morristown Water System Identification number on exterior of meter lid. Morristown Water System shall supply identification number information. Manufacture shall provide Certified Test Record in accordance with Sec. 3.8 of AWWA C710-90, Standard for Cold-Water Meters-Displacement Type.
Morristown Water System Specifications # 510

Specifications for ¾" Water Meters
MWS Item Number(s) Unknown
Last Revision: April 6, 2000

General:

Specification for Nutating Disc or Oscillating Piston type, positive displacement meter for use in measurement of potable cold water in residential, commercial, and industrial services where flow is in one direction only.

Performance Conditions:

<table>
<thead>
<tr>
<th>Size</th>
<th>¾"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical Operating Range</td>
<td>3/4 to 35 GPM</td>
</tr>
<tr>
<td>Low Flow</td>
<td>3/8 GPM</td>
</tr>
<tr>
<td>Maximum Continuous Flow</td>
<td>25 GPM</td>
</tr>
<tr>
<td>Pressure Loss</td>
<td>5 PSI at 25 GPM</td>
</tr>
<tr>
<td>Maximum Operating Temp.</td>
<td>80 Deg. F.</td>
</tr>
<tr>
<td>Maximum Operating Pres.</td>
<td>150 PSI</td>
</tr>
<tr>
<td>Register Type</td>
<td>Straight reading, permanently sealed magnetic drive w/ warranty</td>
</tr>
<tr>
<td>Registration</td>
<td>10 Gallons</td>
</tr>
<tr>
<td>Register Capacity</td>
<td>10,000,000 Gallons</td>
</tr>
<tr>
<td>Meter Connections</td>
<td>¾” spud thread bronze</td>
</tr>
<tr>
<td>Meter Housing</td>
<td>Cast Bronze</td>
</tr>
<tr>
<td>Housing Top Plate</td>
<td>Bronze</td>
</tr>
<tr>
<td>Measuring Chamber</td>
<td>Plastic</td>
</tr>
<tr>
<td>Meter Length</td>
<td>7-½”</td>
</tr>
<tr>
<td>AMR Capability</td>
<td>Transmitter Register (RTR), Orion System with Data Profiling</td>
</tr>
</tbody>
</table>

Construction:

Meter should be constructed to meet or exceed AWWA Standards C710-90 or latest revision Cold-Water Meters Displacement Type. Manufacture should place Morristown Water System Identification number on exterior of meter lid. Identification number information shall be supplied by Morristown Water System. Manufacture shall provide Certified Test Record in accordance with Sec. 3.8 of AWWA C710-90, Standard for Cold-Water Meters-Displacement Type, Plastic Main Case; and Water Meters-Selection, Installation, Testing, or Maintenance.

Approved Manufacture(s):

| Badger | Model 35 |

Specifications for 1" Water Meters
MWS Item Number(s) Unknown
Last Revision: April 4, 2000

General:

Specification for Nutating Disc or Oscillating Piston type, positive displacement meter for use in measurement of potable cold water in residential, commercial, and industrial services where flow is in one direction only.

Performance Conditions:

<table>
<thead>
<tr>
<th>Size</th>
<th>1"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical Operating Range</td>
<td>1-1/4" to 70 GPM</td>
</tr>
<tr>
<td>Low Flow</td>
<td>3/4 GPM</td>
</tr>
<tr>
<td>Maximum Continuous Flow</td>
<td>50 GPM</td>
</tr>
<tr>
<td>Pressure Loss</td>
<td>6.5 PSI at 50 GPM</td>
</tr>
<tr>
<td>Maximum Operating Temp.</td>
<td>80 Deg. F.</td>
</tr>
<tr>
<td>Maximum Operating Pres.</td>
<td>150 PSI</td>
</tr>
<tr>
<td>Register Type</td>
<td>Straight reading, permanently sealed magnetic drive w/ warranty</td>
</tr>
<tr>
<td>Registration</td>
<td>10 Gallons</td>
</tr>
<tr>
<td>Register Capacity</td>
<td>10,000,000 Gallons</td>
</tr>
<tr>
<td>Meter Connections</td>
<td>1" spud thread bronze</td>
</tr>
<tr>
<td>Meter Housing</td>
<td>Cast Bronze</td>
</tr>
<tr>
<td>Housing Top Plate</td>
<td>Bronze</td>
</tr>
<tr>
<td>Measuring Chamber</td>
<td>Plastic</td>
</tr>
<tr>
<td>Meter Length</td>
<td>10- ¾"</td>
</tr>
<tr>
<td>AMR Capability</td>
<td>Transmitter Register(RTR), Orion System with Data Profiling</td>
</tr>
</tbody>
</table>

Construction:

Meter should be constructed to meet or exceed AWWA Standards C710-90 or latest revision Cold-Water Meters Displacement Type. Manufacture should place Morristown Water System Identification number on exterior of meter lid. Identification number information shall be supplied by Morristown Water System. Manufacture shall provide Certified Test Record in accordance with Sec. 3.8 of AWWA C710-90, Standard for Cold-Water Meters-Displacement Type, Plastic Main Case; and Water Meters-Selection, Installation, Testing, or Maintenance.

Approved Manufacture(s):

Badger Model 70
Specifications for 1-1/2” Water Meters
MWS Item Number(s) Unknown
Last Revision: November 21, 2006

General:
Specification for Nutating Disc or Oscillating Piston type, positive displacement meter for use in measurement of potable cold water in residential, commercial, and industrial services where flow is in one direction only.

Performance Conditions:
Size 1-1/2”
Typical Operating Range 2-1/2 to 120 GPM
Low Flow 1-1/4 GPM
Maximum Continuous Flow 80 GPM
Pressure Loss 4.8 PSI at 80 GPM
Maximum Operating Temp. 80 Deg. F.
Maximum Operating Pres. 150 PSI
Register Type Straight reading, permanently sealed magnetic drive w/ warranty
Registration 100 Gallons
Register Capacity 100,000,000 Gallons
Meter Connections 1-1/2” AWWA two bolt elliptical flange
Test Plugs 1” NPT test plug

Meter Housing Cast Bronze
Housing Top Plate Bronze
Measuring Chamber Plastic
Meter Length 12-5/8”

Construction:
Meter should be constructed to meet or exceed AWWA Standards C710-90 or latest revision Cold-Water Meters Displacement Type. Manufacture should place Morristown Water System Identification number on exterior of meter lid. Identification number information shall be supplied by Morristown Water System. Manufacture shall provide Certified Test Record in accordance with Sec. 3.8 of AWWA C710-90, Standard for Cold-Water Meters-Displacement Type, Plastic Main Case; and Water Meters-Selection, Installation, Testing, or Maintenance.

Approved Manufacture(s):
Badger Model 120
Specifications for 2" Water Meters
MWS Item Number(s) Unknown
Last Revision: August 1, 2006

General:

Specification for Nutating Disc or Oscillating Piston type, positive displacement meter for use in measurement of potable cold water in residential, commercial, and industrial services where flow is in one direction only.

Performance Conditions:

<table>
<thead>
<tr>
<th>Size</th>
<th>2"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical Operating Range</td>
<td>2 to 170 GPM</td>
</tr>
<tr>
<td>Low Flow</td>
<td>1 GPM</td>
</tr>
<tr>
<td>Maximum Continuous Flow</td>
<td>100 GPM</td>
</tr>
<tr>
<td>Pressure Loss</td>
<td>3.3 PSI at 100 GPM</td>
</tr>
<tr>
<td>Maximum Operating Temp.</td>
<td>80 Deg. F.</td>
</tr>
<tr>
<td>Maximum Operating Pres.</td>
<td>150 PSI</td>
</tr>
<tr>
<td>Register Type</td>
<td>Straight reading, permanently sealed magnetic drive w/warranty</td>
</tr>
<tr>
<td>Registration</td>
<td>100 Gallons</td>
</tr>
<tr>
<td>Register Capacity</td>
<td>100,000,000 Gallons</td>
</tr>
<tr>
<td>Meter Connections</td>
<td>2" AWWA two bolt elliptical flange</td>
</tr>
<tr>
<td>Test Plugs</td>
<td>1" NPT test plug</td>
</tr>
<tr>
<td>Meter Housing</td>
<td>Cast Bronze</td>
</tr>
<tr>
<td>Housing Top Plate</td>
<td>Bronze</td>
</tr>
<tr>
<td>Measuring Chamber</td>
<td>Plastic</td>
</tr>
<tr>
<td>Meter Length</td>
<td>15- ¼"</td>
</tr>
</tbody>
</table>

Construction:

Meter should be constructed to meet or exceed AWWA Standards C710-90 or latest revision Cold-Water Meters Displacement Type. Manufacture should place Morristown Water System Identification number on exterior of meter lid. Identification number information shall be supplied by Morristown Water System. Manufacture shall provide Certified Test Record in accordance with Sec. 3.8 of AWWA C710-90, Standard for Cold-Water Meters-Displacement Type, Plastic Main Case; and Water Meters-Selection, Installation, Testing, or Maintenance.

Approved Manufacture(s):

Badger Model 170
Specifications for ½" x 5/8" Meter Setters
MWS Item Number(s) Unknown
Last Revision: July 29, 2004

General:

This specification is for a copper setter to be used in conjunction with a single ¾” water meter setting. Setter is to be used with-in an 18” round concrete meter box for the purpose of providing electric continuity, expediting meter readings, and ease of meter change outs.

Performance Conditions:

- Setter shall be assembled using lead free solder
- Setter assembly shall include saddle nuts on inlet and outlet side of meter connection
- Setter assembly shall include dual angle check valve on outlet side of meter and angle ball valve on the inlet side of the meter connection. Angle ball valve shall include padlock wings.
- Setter service line connection shall be ¾” copper or PVC horizontal compression type
- Setter riser height shall be (12) twelve inches
- Setter shall be assembled to properly accommodate a ½” x 5/8” water meter and gaskets
- All setter components shall be made of brass or copper.
- Manufacture shall provide a one-year product warranty to be free from defects in material and factory workmanship.

Approved Manufacture(s):

Setter Assembly WITH-OUT Double Check Valve
Mueller Company

Setter Assembly with Double Check Valve
Mueller Company
Specifications for 4” – 12” Plain Swing Check Valve

MWS Item Number(s) Unknown
Last Revision: March 12, 1998
Date Written: March 12, 1998

General

Check valve shall be of the iron body, bronze mounted, full opening swing type. Valve clapper shall swing completely clear of the water way when valve is full open, permitting a "full flow" thru the valve equal to the nominal pipe diameter. Check valve shall comply with A.W.W.A. Standard C508-93 or latest revision.

Rating

Check valve shall be rated for 150 psi water working pressure, 300 psi hydrostatic test for structural soundness. Seat tightness at rated working pressure shall be in accordance with valves shown in A.W.W.A. C-500 for gate valves and fully conform to A.W.W.A. C508-93.

End Configurations

Check valve shall be furnished with mechanical joint end connections per A.W.W.A. C-111 without accessories.

Materials

All cast iron shall conform to ASTM-A-126 Class B. Castings shall be clean and sound without defects that will impair their service. No plugging or welding of such defects shall be allowed. Clappers shall be cast iron, bronzed faced. Hinge pins shall be 18-8 Stainless Steel rotating in bronze plugs.

Design

Check valve shall be constructed to permit top entry for complete removal of internal components without removing the valve from the line.

Painting

The inside and outside of all valves, together with the working parts except bronze and machined surfaces, shall be coated in accordance with A.W.W.A. C5-8-93 standards.

Marking

Marking shall be in accordance with A.W.W.A. C-508-93 and shall include size, working pressure, cast arrow to indicate direction of flow, name of manufacture, and year of manufacture.
Specifications for 4" -- 18" Tilting Disc Check Valve
MWS Item Number(s) Unknown
Last Revision: March 12, 1998
Date Written: November 11, 1996

General:

The check valve shall be of the tilting disc. The tilting disc check valve shall consist of a circular disc with conical rim, hinged about a fixed pivot above its centerline and offset from the plane of the seat, seating against a body seat clamped between the two sections of the valve body.

Construction:

The body shall be two-piece, consisting of an entrance and a discharge section bolted together at an angle with the pipeline. An o-ring seal in a groove between the body flanges shall be in place to prevent leakage between the flanges when bolted together. The valve shall be complete with ANSI Class 125 flanges to mate with adjacent equipment. A body seat shall be clamped in place in a slot between the body sections. The body seat shall have a conical finish to mate with the disc seat. There shall be an inspection port provided in both the entrance and discharge section to provide visual access both upstream and downstream of the disc. An indicator shall be provided to show disc position for full range of travel. All valve casting shall be ASTM A126 Class C cast iron, ASTM A536 Grade 65-45-12 ductile iron, or ASTM A216 Grade WCB cast steel. Disc seating shall be bronze. Body seat ring shall be bronze.

Testing:

Seat and leakage testing shall in strict accordance with AWWA Standard C-508 latest edition for Swing Check Valves.

Coating:

Coating shall be two layers (5 mils minimum each coat.) First coat interior and exterior to be amine modified polyamide epoxy Amerlock 400 or approved equivalent. The second coat shall be the same as the first coat.
Morristown Water System

Specifications for 16” Plain Swing Check Valve
MWS Item Number(s) Unknown
Last Revision: March 12, 1998
Date Written: March 12, 1998

General
Check valve shall be of the iron body, bronze mounted, full opening swing type. Valve clapper shall swing completely clear of the water way when valve is full open, permitting a “full flow” through the valve equal to the nominal pipe diameter. Check valve shall comply with A.W.W.A. Standard C508-93 or latest revision.

Rating
Check valve shall be rated for 150 psi water working pressure, 300 psi hydrostatic test for structural soundness. Seat tightness at rated working pressure shall be in accordance with valves shown in A.W.W.A. C-500 for gate valves and fully conform to A.W.W.A. C508-93.

End Configurations
Check valve shall be furnished with flanged end connections per A.W.W.A. C-111.

Materials
All cast iron shall conform to ASTM-A-126 Class B. Castings shall be clean and sound without defects that will impair their service. No plugging or welding of such defects shall be allowed. Clappers shall be cast iron, bronzed faced. Hinge pins shall be 18-8 Stainless Steel rotating in bronze plugs.

Design
Check valve shall be constructed to permit top entry for complete removal of internal components without removing the valve from the line.

Painting
The inside and outside of all valves, together with the working parts except bronze and machined surfaces, shall be coated in accordance with A.W.W.A. C5-8-93 standards.

Marking
Marking shall be in accordance with A.W.W.A. C-508-93 and shall include size, working pressure, cast arrow to indicate direction of flow, name of manufacture, and year of manufacture.
General:

The iron used for these castings shall conform to the applicable portions of ASTM Standard for gray iron castings (A-48-64) class no. 25. They shall be made of clean, even grain, tough gray iron. The castings shall be smooth, true to pattern and free from projections, sand holes, wrap and other defects, which would interfere with the use of, or impair the serviceability of the castings. All castings shall be well cleaned before inspection, and shall be inspected before coating. Unless otherwise specified, all castings shall be coated with coal tar pitch varnish, to which sufficient oil has been added to make a smooth coating, tough and tenacious when cold, not tacky and brittle.

Approved Manufacture(s):

Contractor to provide submittals for approval before construction
Section 12 – Standard Details

Index

Drawing Description

Utility Placement Detail
Pipe Embedment Detail
Fire Hydrant Assembly
Flushing Valve Detail
Typical Small Meter Setting 5/8” – 2” Disc.
Typical Large Meter Setting 2” – 6” Turbo or Compound
Tapping Saddle and Valve
Typical Buttress for Tees
Buttress for Horizontal Bends and Caps
Side View – Anchor Block & bearing Pads
Thrust Block Sizing
TYPICAL UTILITY CROSS SECTION

NOTE: Right-Of-Way Width 50'
Road Width 25'
Utility Location will vary depending on Road and R.O.W. size.
Pipe Embedment Detail

In Earth

Crushed Stone Dr. Carefully Selected Trench Excavation

In Rock

Earth

Rock

36'

6'
TYPICAL BLOW-OFF ASSEMBLY

- 24"m OR SQUARE CONCRETE
- FRAME & COVER CLOW F-3370 OR EQUAL
- 24"m PRECAST CONC. BARREL
- MIN. 3 CU.FT. #57 STONE FOR DRAIN.
- CONCRETE BLOCKING (SEE NOTE)

Blow-Off Detail

Standard Specifications & Drawings for Material & Pipe Line Installation

Feb. 25, 1998
Drawn By: M. Howard
No Scale
10" Round Concrete Meter Box
w/ Aluminum Lid

1/2" x 5/8" Disc Water Meter

1/2" x 5/8" Copper Setter
Muller B-2470-R-2

Customer's Water Service Line

Min. 36"

6" PVC Service Saddle
Ford Meter Box Company
Catalog # S70-603

3/4" Copper Stop
Ford Meter Box Company
Catalog # F700-3

3/4" Type K Copper

6" PVC Water Main

NOTE: CUSTOMER RESPONSIBILITY BEGINS AT
THE METER SETTER COUPLING
NOTES:
1. ALL CONCRETE TO BE MIN. CLASS 'B' (2500 P.S.I.)
2. BUTTRESS DIMENSIONS SHOWN ARE MINIMUM. DIMENSIONS ARE BASED UPON
 SOIL BEARING PRESSURE OF 3000 P.S.F. OR SOIL BEARING PRESSURE
 IS LESS THAN 3000 P.S.F. SPECIAL BUTTRESS DESIGN IS REQUIRED.

<table>
<thead>
<tr>
<th>SIZE OF BRANCH</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>6"</td>
<td>8"</td>
<td>10"</td>
<td>12"</td>
<td>16"</td>
<td></td>
</tr>
<tr>
<td>7"</td>
<td>9"</td>
<td>1'-0"</td>
<td>1'-2"</td>
<td>1'-6"</td>
<td></td>
</tr>
<tr>
<td>6"</td>
<td>8"</td>
<td>8"</td>
<td>8"</td>
<td>10"</td>
<td></td>
</tr>
<tr>
<td>8"</td>
<td>10"</td>
<td>1'-0"</td>
<td>1'-3"</td>
<td>1'-8"</td>
<td></td>
</tr>
<tr>
<td>8"</td>
<td>9"</td>
<td>10"</td>
<td>1'-0"</td>
<td>1'-2"</td>
<td></td>
</tr>
</tbody>
</table>

CARRY CONCRETE TO SOLID GROUND

PLAN

SECTION
Buttress for Horizontal Bends

Notes:
1) All concrete to be class "B" 2500 P.S.I.
2) Buttress dimensions shown are minimum. Dimensions based upon soil bearing pressure of 3000 P.S.F. and static water pressure of 150 P.S.I. Where soil bearing pressure is less than 300 P.S.F. special buttress design is required.

Buttress for Horizontal Bends

<table>
<thead>
<tr>
<th>Bend</th>
<th>6"</th>
<th>8"</th>
<th>10"</th>
<th>12"</th>
<th>16"</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/32</td>
<td>A</td>
<td>6"</td>
<td>8"</td>
<td>10"</td>
<td>1'-0"</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>7"</td>
<td>8"</td>
<td>9"</td>
<td>10"</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>7"</td>
<td>7"</td>
<td>8"</td>
<td>8"</td>
</tr>
<tr>
<td>1/16</td>
<td>A</td>
<td>9"</td>
<td>1'-0"</td>
<td>1'-6"</td>
<td>1'-0"</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>7"</td>
<td>8"</td>
<td>9"</td>
<td>10"</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>8"</td>
<td>9"</td>
<td>10"</td>
<td>11"</td>
</tr>
<tr>
<td>1/8</td>
<td>A</td>
<td>1'-3"</td>
<td>1'-8"</td>
<td>2'-1"</td>
<td>2'-6"</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>7"</td>
<td>8"</td>
<td>9"</td>
<td>11"</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>8"</td>
<td>9"</td>
<td>10"</td>
<td>11"</td>
</tr>
<tr>
<td>1/4</td>
<td>A</td>
<td>2'-0"</td>
<td>2'-6"</td>
<td>3'-0"</td>
<td>3'-6"</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>6"</td>
<td>9"</td>
<td>1'-0"</td>
<td>1'-3"</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1'-10"</td>
<td>1'-9"</td>
<td>1'-8"</td>
<td>1'-7"</td>
</tr>
</tbody>
</table>

Buttress for Horizontal Caps

<table>
<thead>
<tr>
<th>Cap</th>
<th>6"</th>
<th>8"</th>
<th>10"</th>
<th>12"</th>
<th>16"</th>
<th>20"</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>6"</td>
<td>8"</td>
<td>10"</td>
<td>12"</td>
<td>16"</td>
<td>20"</td>
</tr>
<tr>
<td>E</td>
<td>6"</td>
<td>8"</td>
<td>8"</td>
<td>10"</td>
<td>1'-0"</td>
<td>1'-4"</td>
</tr>
<tr>
<td>F</td>
<td>1'-0"</td>
<td>1'-4"</td>
<td>1'-8"</td>
<td>2'-0"</td>
<td>2'-8"</td>
<td>3'-3"</td>
</tr>
<tr>
<td>G</td>
<td>1'-5"</td>
<td>1'-11"</td>
<td>2'-5"</td>
<td>2'-10"</td>
<td>3'-9"</td>
<td>4'-9"</td>
</tr>
</tbody>
</table>

Standard Specifications & Drawings for Material & Pipe Line Installation

Buttress for Horizontal Bends & Caps

Feb. 25, 1998

Drawn By: M. Howard

No Scale
NOTE:
1. ANCHOR BARS: 4” THRU 6” PIPE 2 #5
 8” THRU 16” PIPE 2 #6

2. ANCHOR BARS TO BE HOTDIP GALV. AFTER FABRICATION. COMPLETELY COAT EXPOSED BARS AFTER INSTALLATION WITH TWO COATS OF BITUMINOUS MASTIC

3. ALL BEARING PADS TO BE Poured ON UNDISTURBED SOIL

45° OR 22.5° BENDS

45k BEARING PAD

TEE

45k OR 22.5k ANCHOR BLOCK

WYE

SEE NOTE 1

SEE NOTE 1

90° BENDS

90k BEARING PAD

90k ANCHOR BLOCK

Standard Specifications & Drawings for Material & Pipe Line Installation

SIDE VIEW-ANCHOR BLOCK & BEARING PADS

Feb. 25, 1998

Drawn By: M. Howard

No Scale
<table>
<thead>
<tr>
<th>PIPE (IN.)</th>
<th>THRUST BLOCKS</th>
<th>WYES & TEES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90° BENDS</td>
<td>45° BENDS</td>
</tr>
<tr>
<td></td>
<td>B D REINF. (E.W.)</td>
<td>B D REINF. (E.W.)</td>
</tr>
<tr>
<td>2</td>
<td>1.0' 0.7'</td>
<td>1.0' 0.7'</td>
</tr>
<tr>
<td>3</td>
<td>1.0' 0.7'</td>
<td>1.0' 0.7'</td>
</tr>
<tr>
<td>4</td>
<td>1.0' 0.7'</td>
<td>1.0' 0.7'</td>
</tr>
<tr>
<td>6</td>
<td>1.4' 0.7'</td>
<td>1.0' 0.7'</td>
</tr>
<tr>
<td>8</td>
<td>1.8' 0.8'</td>
<td>1.4' 0.7'</td>
</tr>
<tr>
<td>10</td>
<td>2.3' 1.0'</td>
<td>1.7' 0.8'</td>
</tr>
<tr>
<td>12</td>
<td>2.7' 1.0'</td>
<td>2.0' 0.8'</td>
</tr>
<tr>
<td>14</td>
<td>3.2' 1.0' 4 #5</td>
<td>2.4' 1.0' 3 #5</td>
</tr>
<tr>
<td>16</td>
<td>3.6' 1.0' 5 #5</td>
<td>2.7' 1.0' 3 #5</td>
</tr>
<tr>
<td>18</td>
<td>4.1' 1.2' 5 #5</td>
<td>3.0' 1.0' 4 #5</td>
</tr>
<tr>
<td>20</td>
<td>4.5' 1.2' 5 #5</td>
<td>3.4' 1.0' 4 #5</td>
</tr>
<tr>
<td>24</td>
<td>5.5' 1.2' 6 #5</td>
<td>4.0' 1.0' 5 #5</td>
</tr>
<tr>
<td>30</td>
<td>6.8' 1.5' 8 #5</td>
<td>5.0' 1.2' 6 #5</td>
</tr>
<tr>
<td>36</td>
<td>8.2' 1.7' 9 #5</td>
<td>6.0' 1.3' 7 #5</td>
</tr>
<tr>
<td>42</td>
<td>9.6' 1.8' 10 #5</td>
<td>7.0' 1.5' 8 #5</td>
</tr>
</tbody>
</table>

GENERAL NOTES

1. CONTRACTOR SHALL BE RESPONSIBLE FOR PROPER APPLICATION OF THRUST RESTRAINT SYSTEM TO PREVENT MOVEMENT OF PIPE AND FITTINGS.

2. SYSTEM SHOWN IS DESIGNED FOR 150 P.S.I. PRESSURE, 2 ft. COVER, AND SOIL BEARING CAPACITY OF 3000 P.S.F. MINIMUM. WHERE THIS SYSTEM IS INAPPROPRIATE BECAUSE OF UNSTABLE SOIL OR OTHER CONDITIONS, SUBMIT DETAILS OF ALTERNATE SYSTEM TO ENGINEER FOR APPROVAL.

3. USE THRUST BLOCKS FOR 4" THRU 16" FITTINGS IN HORIZONTAL PLANE. USE ANCHOR BLOCKS AND BEARING PADS FOR 4" THRU 16" FITTINGS IN VERTICAL PLANE. USE RESTRAINED JOINT SYSTEM FOR 18" AND LARGER SIZE FITTINGS.

4. ALL FITTINGS IN VERTICAL PLANE, AND ALL FITTINGS 18" AND LARGER SHALL HAVE RESTRAINED JOINTS.

5. RESTRAINED JOINT DISTANCES FOR TEES APPLY TO BRANCH ONLY.

6. WHERE ONE END OF TEE IS PLUGGED, USE "DEAD END" THRUST BLOCK AT PLUG AND BEHIND TEE, OR USE "DEAD END" RESTRAINED JOINT SYSTEM ON BRANCH AND CONNECTED END OF TEE.

7. WHERE CLAMPS ARE APPLIED TO P.V.C. PIPE, PROVIDE W* NEOPRENE PAD BETWEEN PIPE AND CLAMP.

Standard Specifications & Drawings for Material & Pipe Line Installation

Thrust Block Sizing

February 25, 1998

Drawn By: M. Howard

No Scale

WATER SYSTEM
EXHIBIT “A”

Standard Operating Procedure for Water Line Disinfection: New Line Installation

Morristown Utility Commission-Water Department

Date Written: June 23, 2009

Date Revised: November 13, 2013

Scope:

This standard describes the essential procedure for the disinfection of new water line installation. Potable water mains installation may lead to contamination of the water supply and must be disinfected before they are put in service.

MUC recognizes that chlorine is not an effective disinfectant for all contaminants that may enter the water line during construction. Chlorine is ineffective for chemicals, cryptosporidium, many other bacteria and other possible contaminants, therefore; the primary concern during installation will be to protect materials from unsanitary conditions that could lead to contamination. It is MUC’s intent during construction to protect and disinfect pipe, valves, elbows, couplings by the following procedures.

New Line Disinfection:

1. Efforts will be made to keep all pipe, valves, fittings and fire hydrants free of any foreign matter that may cause possible sources of contamination. If foreign matter (mud, trash, storm water, etc.) does enter or comes in contact with pipe interior, a 1% hypochlorite solution will be applied to materials that are in question and flushed accordingly.

2. If materials are kept clean and dry prior to and during installation, the tablet/granule method will be used to disinfect the new main.

 a. Tablet Method: Placing of 5-g hypochlorite tablets so that new mains achieve required 25 mg/L dose for disinfection. Method consists of placing tablets in designated sections of pipe per table on Line Disinfection Field Guide taken from AWWA Standard for Disinfecting Water Mains (AWWA C651) Table 2. This table states the number of tablets per given pipe length and recommends one tablet per hydrant, hydrant lateral, and other appurtenances. The tablets shall be attached by a food grade adhesive and applied only on the broadside of the tablet. Tablets will be attached to the upper inside section of pipe with equal number of tablets on each end of a given section of pipe.
b. Granule Method: During construction granules shall be placed at the upstream end of the first section of pipe, at the upstream end of each branch, and at 500-ft intervals. The amount of granules needed is listed on the Line Disinfection Field Guide taken from AWWA Standard for Disinfecting Water Mains (AWWA C651) Table 1.

3. When line installation is complete, with disinfectant in place, the line will be slowly filled from the tie in location at a rate no greater than 1 ft/s. Caution will be taken to eliminate air pockets. Once water main is full it should remain for 24 hrs unless water temp. is below 41°F where it should remain for 48 hrs. Measure chlorine concentration at regular intervals to ensure the 25mg/L dose is achieved throughout. At the end of the 24 hr. period the concentration should be checked to ensure the main has a residual of not less than 10 mg/L of free chlorine.

4. Final flushing shall be used to remove the heavily chlorinated water from the pipe, valves and fittings until the water leaving the main is no higher in chlorine concentration than that is normally in the water system. Care will be taken to dispose of the heavily chlorinated water such that it will not cause damage to the environment.

5. After final flushing and before the new water main is connected to the distribution system, one set of acceptable samples, taken at a minimum of 48 hrs. after flushing, shall be collected from the new main. One set of samples should be taken from every 2,500 ft of new main, plus one set from the end of the line and at least one set from each branch. Samples shall be tested for bacteriological quality and show the absence of coliform bacteria. Standard sampling and testing procedure should apply.

6. If all tests produce acceptable results, main is ready to be put in service.

7. If the initial disinfection fails to produce satisfactory bacteriological results or if other water quality is affected, the new main may be refilled and shall be resampled. If check samples also fail to produce acceptable results, the main shall be rechlorinated by the continuous feed or slug method until satisfactory results are obtained—that being one set of acceptable samples taken 48 hrs after flushing.
Date and Time of Disinfection: ________________________________

Location: __

Length and Size of Pipe Section Being Disinfected: __

Number of Fire Hydrants, Tees, Bends, etc. in Section: __

Amount of Chlorine Used for Disinfection Process:

*Refer to Line Disinfection Field Guide for Dosage

of Tablets: ____________________ and/or Amount of Granules(grams): _______________________

Reading from Test Strips Showing Chlorine Disinfection Concentration: _________________________

Date and Time Flushing Begins: ___

Total Time Solution In Piping: ___ HRS

Length of Time Line Flushed After Disinfection: ________________________________ MINUTES

*See Field Guide for Appropriate Flushing Durations

Chlorine Residual After Flushing: __________________________ mg/L

Date and Time BACT Sample Collected: __

Results: __

ATTACH Copy of Results to Record!!

Comments: ___

Disinfection Completed By: __

Date: __
Scope
This Standard describes essential procedure for the disinfection of repaired potable water mains. Potable water mains taken out of service for inspection, repair, or other activities that might lead to contamination of the water supply shall be disinfected before they are returned to service.

MUC recognizes that chlorine is not an effective disinfectant for all contaminants that may enter a water line during a repair procedure. Chlorine is ineffective for chemicals, cryptosporidium, many other bacteria, and other possible contaminants. Therefore, the primary concern during repairs will be to maintain the integrity of the line. It is the intent of MUC to protect construction materials such as pipes, valves, elbows, couplings, repair sleeves, etc… from unsanitary conditions. This will be accomplished by the following procedures.

Procedure

1. If water flow is manageable with pumps and/or controlled drainage, excavate damaged water line to determine type of failure. If flow is uncontrollable then proceed to Step 6.

2. Valve off leak downstream

3. Reduce the flow upstream from the leak but allow enough flow to maintain a positive pressure at the leak site.

4. Continue to excavate until 360 degrees of the water line is exposed. Excavation must be 18” lower than the exposed water line. Care must also be taken to drain any water runoff away from damaged pipe. Excess water must be pumped or drained away from work area. If using a pump to control water run off a sump area must be 36” lower than the damaged pipe.

5. If the leak can be repaired with a full circle clamp, repairs will be made, the line will be flushed and service restored. No further action will be taken.

6. If the line will have to be cut and a section replaced, the following actions will be taken.

7. Upstream valve will be closed and excess water will continue to be pumped from the leak site and all cover will be removed 360 degrees from the pipe at least 18” in both directions from the pipe cut sites.

8. A 1% hypochlorite solution will be prepared by adding 2 oz. of 65% HTH or about 1 quart of 5% bleach to 1 gallon of water.

9. The surrounding area will be checked for signs of broken sewer or septic lines and animal waste. If present, special care must be taken and a 1% hypochlorite solution should be sprayed around the work site.
Morristown Water System

Leak Repair Log

<table>
<thead>
<tr>
<th>Date of Leak: ___________________</th>
<th>Location: __</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Leak: Service ____ Main____ Meter____ Other____</td>
<td></td>
</tr>
<tr>
<td>Repair Description: __</td>
<td></td>
</tr>
<tr>
<td>Interruption of Service: YES____ NO____</td>
<td></td>
</tr>
<tr>
<td>Main Size: ____</td>
<td>Repaired under pressure? YES____ NO____</td>
</tr>
<tr>
<td>Was positive pressure maintained while trench was opened and area cleaned? YES____ NO____</td>
<td></td>
</tr>
<tr>
<td>Time Main Shut Down? ______________________________</td>
<td></td>
</tr>
<tr>
<td>Cause of leak or break? __</td>
<td></td>
</tr>
<tr>
<td>Length of Time Line Flushed After Repair: ______________________________ MINUTES</td>
<td></td>
</tr>
<tr>
<td>Chlorine Residual After Flushing: ______________________ mg/L</td>
<td></td>
</tr>
<tr>
<td>BACT Sample Collected? YES____ NO____</td>
<td>Results: __</td>
</tr>
<tr>
<td>ATTACH Copy of Results to Record!!</td>
<td></td>
</tr>
<tr>
<td>Date/Time Water Main Returned to Service: ______________________________</td>
<td></td>
</tr>
<tr>
<td>Comments: __</td>
<td></td>
</tr>
<tr>
<td>Leak Repaired By: ___________________</td>
<td>Date: ______________________________</td>
</tr>
</tbody>
</table>
10. Work can now proceed with the cutting of the pipe. Once the defective section is removed, both ends of the remaining pipe should be checked and any debris from pipe cutting or other sources should be removed.

11. The new section of pipe and both ends of the remaining pipe should be swabbed with 1% hypochlorite solution and repairs completed.

12. Upstream and downstream valves will be opened and the nearest flushing site downstream from the downstream valve will be opened. The line will be vigorously flushed at a velocity of at least 2 feet per second. Example (if the flushing point is 3,000 feet from the leak site and the line is flushed at 2ft/sec. then it will take 1500 sec. or 25 minutes before the first water from the leak site begins to appear.)

13. After the line is flushed a single bacteriological sample shall be obtained immediately. If the line is looped and the direction of flow cannot be determined, a bacteriological sample from both direction of the leak will be obtained. Samples shall be coded “D”, Necessary arrangements will be made with a certified lab to run tests within the 30 hour time limit for late in the day, holiday and weekend samples. If the sample is negative no further action is required. If the sample is positive, then the original site will be re-sampled and 1 repeat samples upstream and 1 downstream from the leak area at customer homes will be obtained within 24 hours of notification of the positive sample. The code for the repeat samples shall be “RA” for repeat above; “RB” for repeat below and “RS” for repeat same. If all three are negative no further action will be taken. If the sample from the original site is positive and the other two are negative, we will ask the state to invalidate the sample as site specific due to domestic plumbing and no further action will be taken. If any of the additional sample sites come back as positive, the state will be immediately notified and action will be taken as per their guidance.

14. If it is suspected that the line may have had containments enter the line that cannot be removed, 25mg/liter chlorine will be added to the line in addition to all of the above procedures. The 25mg/liter dose will be calculated based upon upstream closed valve to downstream closed valve distance per the attached leak repair log.

15. Service line leak on 1” or smaller service line will not have any samples taken or additional disinfectant added. The leak will be clamped off to prevent any contaminant from entering the main line. The service line will be flushed and a chlorine residual will be taken the same as a new installation. Service line leaks on lines larger than 1” will follow main leak procedures.

16. A leak repair log will be kept on all leaks and any samples results will be attached to the leak repair log.

END OF SECTION
Section 13 – Backflow Prevention

Index

Reduced Pressure Backflow Prevention Devices Installation Guide
Morristown Utility Systems Backflow Prevention Requirements
Fire Sprinkler System Backflow Protection Policy
Diagram: Standard Installation

 Large Meters

 Sprinkler Connections

Reduced Pressure Backflow Prevention Devices Installation Guide for Lawn Irrigation
Diagram: Yard Irrigation Backflow Prevention Assembly
Reduced Pressure Backflow Prevention Devices Installation Guide

The following requirements shall be followed in its entirety for installing and maintaining backflow devices on Morristown Utility Systems.

1. The RPBP must be installed in an adequate space for testing as to eliminate the possibility of confined space entry and ensure safety of personnel and the device.

2. The RPBP must be no higher than 5 feet from the floor, at no time will they be approved for installation of more than 5 feet.

3. Testcocks must be exposed on the front side or top of the backflow device, with a minimum of 6 inches clearance for testing. Fittings for testing the device must be installed on the device at the time of installation.

4. There shall be a minimum of 12 inches clearance from the bottom of the relief port to the floor or finished grade.

5. A funnel air gap must be installed on the relief valve opening with a drain installed to a safe place for discharge. (Care should be taken when installing the RPBP near anything that could be harmed with water discharging from the relief port.)

6. Under no circumstances will a by-pass be permitted without the appropriate, approved backflow assembly being installed.

7. The RPBP shall be equipped with resilient wedge seat valves for the No. 1 and No. 2 shutoff if the device is 2 ½" to 10".

8. All backflow prevention devices shall be installed with wye strainers, which shall be installed aiming down.

9. Devices are to be installed in a horizontal orientation only unless otherwise approved by the State of Tennessee and Morristown Utility Systems.

10. Parallel devices are required on any main service line installations requiring continuous service. This is to maintain a continuous water supply during testing and maintenance.

11. Provisions must be made to protect the device from vandalism and freezing. Insulation or other covering must not restrict or cover up the relief valve opening, test cocks, cut off valves or name plates on the device. Devices in an insulated enclosure must have adequate access, acceptable inside clearance, and adequate drainage.

12. The service line must have no outlet, tee, tap or connection of any sort to or from the supply line between the meter and the protective assembly.

13. All devices used for backflow prevention must be approved by the State of Tennessee along with Morristown Utility Systems. This list is available through the Morristown Water Systems Operation Office.
Morristown Utility Systems Backflow Prevention Requirements

- Domestic backflow preventer type required is: Reduced Pressure Backflow Preventers
- Domestic backflow preventer location is: preferably inside

- Fire sprinkler backflow preventer type required is: minimum required on a Class 1, 2, or 3 Fire Protection System is a Double Check Detector Assembly: Please note - there are "special conditions" where a Reduced Pressure Detector Assembly is required on a fire sprinkler line. If there are any questions please refer to the Morristown Utility Systems "Fire Sprinkler System Backflow Protection Policy" which can be obtained by contacting Morristown Utility Systems.

- Fire sprinkler backflow preventer location is: preferably inside

- Irrigation water backflow preventer type required is: minimum required is (1) Reduced Pressure Backflow Preventer

- Irrigation water backflow prevention location is: preferably inside

- Water meter location is: outside at property line

- All devices used for backflow prevention must be approved by the State of Tennessee along with Morristown Utility Systems. This list is available through the Morristown Water Systems Operation Office.
Morristown Utility Systems

Fire Sprinkler System Backflow Protection Requirements
Requirements For Fire Protection System Classifications

Class 1, 2 & 3 systems will require the moderate protection of a Double Check Detector Assembly. However, “special conditions”, (listed below) may exist on the site of a Class 1, 2, or 3 fire sprinkler system. Under these special conditions an approved Reduced Pressure Detector Assembly is required at the user fire system connection.

“SPECIAL CONDITIONS”

The user is unwilling to state that they will not use chemical additives.

Class 4 & 5 systems will normally need maximum protection (air gap or Reduced Pressure Detector Assembly) to protect the public potable-water system.

Class 6 system protection would depend on the requirements of both industry and fire protection, and could only be determined by a survey of the premises.
September 01, 2000

For cross-connection control, fire protection systems will be classified on the basis of water source and arrangement of supplies as follows:

Class 1: Direct connections from water mains only; no pumps, tanks, or reservoirs; no physical connection from other water supplies; no anti-freeze or other additives of any kind; all sprinkler drains discharging to atmosphere, dry well or other safe outlets.

Class 2: Same as Class 1, except that booster pumps may be installed in the connections from the street mains (Booster pumps do not affect the potability of the system; it is necessary, however, to avoid drafting so much water that pressure in the main is reduced below 10 p.s.i.)

Class 3: Direct connection from public water supply plus one or more of the following: elevated storage tanks; fire pumps taking suction from above ground covered reservoirs or tanks; and pressure tanks. (All storage facilities are filled or connected to public water only, the water in the tanks is to be maintained in a potable condition.) Otherwise, Class 3 systems are the same as Class 1.

Class 4: Directly supplied from public mains similar to Classes 1 & 2, and with an auxiliary water supply on or available to the premises; or an auxiliary supply may be located within 1,700 ft. of the pumper connection.

Class 5: Directly supplied from public mains, and interconnected with auxiliary supplies, such as: pumps taking suction from reservoirs exposed to contamination, or rivers and pools; driven wells; mills or other industrial waste systems; or where antifreeze or other additives are used.

Class 6: Combined industrial and fire protection systems supplied from the public water mains only, with or without gravity storage or pump suction tanks.
INSTALLATION CRITERIA

All backflow prevention devices must be approved by the State of Tennessee along with Morristown Utility Systems. All backflow prevention devices will be inspected to verify that the units meet the following requirements and tested to verify that the installed units meet the performance requirements as set forth in the latest edition of the “Manual For Cross-Connection Control and Hydraulic Research, University of Southern California” before they will be accepted by Morristown Utility Systems. A current list of approved devices may be obtained by contacting the Morristown Water Systems Operation Office. It is encouraged that a water system representative be asked to visit the site to review details of the proposed installation prior to the work.

Double Check Detector Assembly Installation Guide

Double Check Detector Assembly Valves must be installed with adequate space to facilitate maintenance and testing.

The device should be installed at least 12 inches above ground, or maximum flood level, whichever is highest, in order to prevent any part of the device from becoming submerged.

The device should be installed with at least a 2 foot clearance on each side of the device.

The water line should be thoroughly flushed prior to installing.

Above ground installations are highly preferred. Where above ground installation is not practical the following general requirements are to be followed for pit or vault installations:

1. Constructed so that it will not flood.
2. Must be well drained.
3. Provided with an access ladder (if needed).
4. Provided with adequate lighting (natural or artificial).

If not already provided, high quality, tight closing, resilient seat, shutoff valves must be installed at each end of the device for testing and servicing purposes.

All Double Check Detector Assembly Valves shall be installed in a horizontal position unless otherwise approved by the State and MUS.

The device should be protected from freezing.

All of the appropriate fittings for testing the device must be installed on the device at the time of installation.
Reduced Pressure Backflow Preventer Installation Guide

The Reduced Pressure Backflow Preventer should be installed with adequate space to facilitate maintenance and testing. The manufacturer’s recommendations concerning space needed for repair and testing of the device should be followed.

The water line should be thoroughly flushed prior to installing a Reduced Pressure Backflow Preventer to expel all debris. Debris hanging under one of the check valves is one of the most common causes of trouble with these devices.

The Operating effectiveness of the devices is nullified if the relief port is subject to flooding. Reduced Pressure Backflow Prevention devices should never be installed below ground level. The drain must be capable of handling the volume of water that can be discharged from the relief port. The relief port should be located a minimum of twelve inches above ground level at the point of discharge and it must never be subjected to flooding. Under no circumstances, should the relief port be plugged. The device depends upon an open relief port for safe operation. Care must be taken to protect the device from freezing.

Reduced Pressure Backflow Preventers will spill or discharge water under some normal and most abnormal operating conditions. When the device is located inside a building, there must be a suitable means of taking care of any discharge without creating a safety or nuisance problem. If a drain is to be provided for the relief valve port, there must be a fixed air gap between the relief port and the drain.

1. Never subject to flooding
 a. There must be a minimum of 12” plus nominal diameter of pipe clearance from the bottom of the relief port to the floor or finished grade.

2. Install RPBP where it will be easily accessible for testing and servicing; less than five feet off of floor.

3. Under no circumstances will a by-pass be permitted.

4. Provide air gap at relief valve discharge port.

5. Install a safe distance from electrical systems or components in order to avoid creating a safety hazard in the event the RPBP should leak or discharge.
STANDARD SPRINKLER CONNECTION

TAPPING SLEEVE & VALVE
OR M.J. TEE & GATE VALVE

FLOW

FIRE SPRINKLER CONNECTION (STANDARD SIZES 12", 10", 8", 6", & 4")
IT IS MUS POLICY TO INSTALL THE SPRINKLER MAIN TO THE PROPERTY LINE OR INSTALL ONE JOINT OF PIPE DOWNSTREAM OF ISOLATION VALVE, WHICH IS CLOSEST TO MUS WATER MAIN. STATE OF TENNESSEE REQUIREMENTS FOR SPRINKLER MAINS MUST BE INSTALLED BY A LICENSED SPRINKLER CONTRACTOR FROM THE WATER SUPPLIER’S TAP TO THE BUILDING. ALL LABOR, MATERIALS, AND EQUIPMENT COST ARE INCLUDED IN MUS CONNECTION FEES.

STANDARD LARGE METER INSTALLATION

EDGE OF PAVEMENT

60" PRECAST CONCRETE MANHOLE
W/ 36" X 24" STEEL ACCESS LID
PRECAST IN FLAT TOP

SENSUS COMPOUND OR TURBO METER
STANDARD SIZES 2", 3", 4", AND 6"

6" OR 4" D.I. PIPE

IT IS MUS POLICY TO INSTALL WATER METERS ON OR NEAR THE PROPERTY LINE/R.O.W. OR AS CLOSE AS POSSIBLE TO EXISTING MUS WATER MAINS; FURTHERMORE, WATER METERS SHOULD BE LOCATED WITHIN GRASS AREAS. ALL LABOR, MATERIALS, AND EQUIPMENT COST ARE INCLUDED WITHIN MUS CONNECTION FEES.

FLOW

TAPPING SLEEVE & VALVE
OR M.J. TEE & GATE VALVE

FLOW

G.V. OPTIONAL

6" OR 4" D.I. BY-PASS WITH GATE VALVE
NORMALIZED CLOSED

FLOW

6" OR 4" D.I. PIPE

FLOW

FLOW

FLOW

FLOW

BACKFLOW PREVENTER ASSEMBLY (MUS APPROVED DEVICE)
MUS BACKFLOW PREVENTER ASSEMBLY MUST BE INSTALLED BEFORE FIRST BRANCH OF FIRE PROTECTION SYSTEM. THIS ASSEMBLY MAY BE INSTALLED IN AN APPROVED PIT, ABOVE GROUND WITHIN A WEATHER PROOF ENCLOSURE, OR WITHIN A HEATED BUILDING. PLEASE SEE MUS FIRE SPRINKLER BACKFLOW PROTECTION POLICY FOR FURTHER DETAILS.
INSTALLATION AND MAINTENANCE ARE OWNERS RESPONSIBILITIES.

REDUCED PRESSURE BACKFLOW PREVENTER ASSEMBLY
(MUS APPROVED DEVICE) IN A PARALLEL INSTALLATION, MUST BE INSTALLED BEFORE FIRST BRANCH CONNECTION. THIS ASSEMBLY MAY BE INSTALLED ABOVE GROUND WITHIN A WEATHER PROOF ENCLOSURE OR WITHIN A HEATED BUILDING. PLEASE SEE MUS CROSS-CONNECTION POLICY FOR FURTHER DETAILS.
INSTALLATION AND MAINTENANCE ARE OWNERS RESPONSIBILITIES.
Reduced Pressure Backflow Prevention Devices Installation Guide For Lawn Irrigation Systems

The following requirements shall be followed, in its entirety, for installing and maintaining backflow devices on Morristown Utility Systems.

1. The RPBP must be installed in an adequate space for testing as to eliminate the possibility of confined space entry and ensure safety of personnel and the device.

2. The RPBP must be no higher than 5 feet from the floor, at no time will they be approved for installation of more than 5 feet.

3. Testcocks must be exposed on the front side or top of the backflow device, with a minimum of 6 inches clearance for testing. Fittings for testing the device must be installed on the device at the time of installation.

4. There shall be a minimum of 12 inches clearance from the bottom of the relief port to the floor or finished grade.

5. A funnel air gap must be installed on the relief valve opening with a drain installed to a safe place for discharge. (Care should be taken when installing the RPBP near anything that could be harmed with water discharging from the relief port.)

6. Under no circumstances will a by-pass be permitted.

7. The RPBP shall be equipped with resilient wedge seat valves for the No. 1 and No. 2 shutoff if the device is 2 ½" to 10".

8. All backflow prevention devices shall be installed with wye strainers, which shall be installed aiming down.

9. Devices are to be installed in a horizontal orientation only unless otherwise approved by the State of Tennessee and Morristown Utility Systems.

10. Only one (1) - Reduced Pressure Backflow Preventer will be required on services set up exclusively for lawn sprinkler systems.

11. Provisions must be made to protect the device from vandalism and freezing. Insulation or other covering must not restrict or cover up the relief valve opening, test cocks, cut off valves or name plates on the device. Devices in an insulated enclosure must have adequate access, acceptable inside clearance, and adequate drainage. It is highly recommended that the assembly be removed and the system drained for the Winter months.

12. The service line must have no outlet, tee, tap or connection of any sort to or from the supply line between the meter and the protective assembly.

13. All devices used for backflow prevention must be approved by the State of Tennessee along with Morristown Utility Systems. This list is available through the Morristown Water Systems Operation Office.
MUS APPROVED YARD IRRIGATION BACKFLOW PREVENTION ASSEMBLY INSTALLATION DIAGRAM